Chemoablation of Metastatic Melanoma with PV-10

S.S. Agarwala St Luke’s Hospital and Health Network, Bethlehem, PA USA
J.F. Thompson Melanoma Institute Australia, Sydney, NSW AUS
B.M. Smithers Princess Alexandra Hospital, Brisbane, QLD AUS
M.I. Ross MD Anderson Cancer Center, Houston, TX AUS
B.J. Coventry Royal Adelaide Hospital, Adelaide, SA AUS
D.R. Minor California Pacific Medical Center, San Francisco, CA USA
C.R. Scoggins University of Louisville, Louisville, KY USA
E.A. Wachter Proventus Pharmaceuticals, Knoxville, TN USA

SMR 2010
4th Interdisciplinary Melanoma & Skin Cancer Centres Meeting
Sydney – 4th Nov 2010
PV-10 is a sterile, non-pyrogenic solution of Rose Bengal disodium (10% RB) for intralesional injection

- RB is a small molecule Fluorescein derivative attributed to Gnehm in 1882

- Prior Human Use of RB
 - IV hepatic diagnostic, 131I radiolabeled RB: Robengatope®
 - Topical ophthalmic diagnostic: Rosettes® and Minims®

- Established Safety History
 - Not metabolized
 - Short circulatory half-life (ca 30 min)
 - Excretion via bile
Chemoablative Mechanism of Action

- **PV-10 transits plasmalemma of cancer cells**
 - Accumulates in lysosomes of cancer cells
 - Excluded from normal cells

- **PV-10 accumulation elicits acute autophagy of cancer cells**
 - Accumulation in lysosomal membrane triggers lysosomal release
 - Complete autophagy within 30-60 min
 - Identical response in cell cultures of Hepa1-6 HCC, HTB-133 human breast carcinoma and H96Ar human multidrug resistant small cell lung carcinoma
Chemoablation can Elicit Bystander Effect

- **IL PV-10 elicits acute necrosis of treated tumor**
 - Rapid necrosis of injected tumors and reduced tumor burden
 - RB does not denature tumor antigens
 - Acute exposure to antigenic tumor fragments to APCs
 - Localized treatment does not compromise immune system

- **Acute necrosis can trigger immunological response**
 - Secondary tumors are rejected in immunocompetent animals
 - No immune response in immune-compromised animals
 - Response is tumor-specific
 - Secondary HCC rejected when primary HCC ablated
 - Melanomas not rejected when primary HCC ablated
 - Adoptive transfer of spleen cells can convey immunity
Phase 1 Clinical Testing

- **20 subjects with AJCC Stage III/IV melanoma at 2 centers in AUS**
 - John F Thompson, Sydney Melanoma Unit
 - Peter Hersey, Newcastle Melanoma Unit

- **Single intralesional injection into each study lesion**
 - Intraleisonal dosing of 1-20 lesions at 50% of calculated lesion volume
 - 1–3 additional lesions untreated to assess bystander response
 - 12–24 weeks observation
 - ORR assessed by modified RECIST
Phase 1 Clinical Testing

- **Adverse Experiences**
 - AEs generally mild to moderate grade (predominantly locoregional)
 - Pain at injection site most common AE (reported by 75% of subjects)
 - 1 instance each of Grade 3 pain and Grade 3 photosensitivity reaction
 - No grade 4 or 5 AEs
 - All AEs recovered without sequelae

- **Efficacy**
 - Injected lesions: ORR = 40% (locoregional disease control in 75% of subjects)
 - Bystander lesions: ORR = 15% (locoregional disease control 55% of subjects)
Male, age 86, Stage III-C, onset 33 months prior. Total parotidectomy, nodal dissection, multiple Sx of mets. Single treatment with 1.2 mL PV-10 to 1 lesion; 3 untreated bystander lesions. NED @ 28 months.
Phase 2 Clinical Testing

- **80 subjects with AJCC Stage III/IV melanoma**
 - Open label, single-arm trial at 7 centers in AUS and USA
 - Sanjiv Agarwala, St Luke’s Hospital and Health Network
 - Brendon Coventry, Royal Adelaide Hospital
 - David Minor, California Pacific Medical Center
 - Merrick Ross, MD Anderson Cancer Center
 - Charles Scoggins, University of Louisville
 - Mark Smithers, Princess Alexandra Hospital
 - John F Thompson, Melanoma Institute Australia
 - Enrollment commenced Aug 2007, completed May 2009
 - Final follow-up completed May 2010
Phase 2 – Protocol

- **Treatment of 1-10 Target Lesions and up to 10 Non-Target Lesions**
 - Target Lesions must be ≥ 0.2 cm diameter
 - Biopsy confirmation of at least one Target Lesion
 - Intralesional dosing at 50% of calculated lesion volume

- **Observe up to 1-2 untreated Bystander Lesions**
 - Typically small or difficult to access
 - Biopsy confirmation of each Bystander Lesion

- **Retreatment (new or partially-responsive lesions)**
 - Allowed at weeks 8, 12 or 16 as necessary
Phase 2 – Protocol and Data Analysis

- **Outcome Assessment**
 - Follow-up for 52 weeks
 - Modified RECIST assessed on Target, Non-Target and Bystander Lesions
 - Progression Free Survival
 - Duration of Response (for CR + PR subjects)
 - Overall Survival

- **Preliminary Safety and Efficacy Data**
 - Monitoring of all case report forms complete
 - Final data validation underway
 - Preliminary data available for full study cohort (N = 80 subjects)
 - Subjects withdrawing prior to Week 8 assigned PD outcome
Phase 2 – Demographics & Treatment Summary

<table>
<thead>
<tr>
<th>Demographic/Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Age (Range):</td>
<td>70.0 yrs (33 – 97)</td>
</tr>
<tr>
<td>Gender:</td>
<td>49 M / 31 F</td>
</tr>
<tr>
<td>Race / Ethnicity (White):</td>
<td>40 (100%)</td>
</tr>
<tr>
<td>AJCC Stage:</td>
<td>III (N=53) / IV (N=27)</td>
</tr>
<tr>
<td>PV-10 Injections</td>
<td>1142</td>
</tr>
<tr>
<td>Treatments per Subject, Median (Range):</td>
<td>2 (1 – 4)</td>
</tr>
<tr>
<td>1 Course:</td>
<td>35 Subjects</td>
</tr>
<tr>
<td>2 Courses:</td>
<td>26 Subjects</td>
</tr>
<tr>
<td>3 Courses:</td>
<td>16 Subjects</td>
</tr>
<tr>
<td>4 Courses:</td>
<td>3 Subjects</td>
</tr>
<tr>
<td>Dose PV-10 per Treatment, Median (Range):</td>
<td>1.6 mL (0.1 – 15)</td>
</tr>
<tr>
<td>Cumulative Dose, Median (Range):</td>
<td>3.4 mL (0.3 – 26.0)</td>
</tr>
</tbody>
</table>
Male, 73, Stage IIIB (N2c) since 2008, Sx of 1° and mets.
Three treatments (Day 0, Wk 8 and Wk 16) with PV-10 to 11 lesions; 1 untreated bystander lesion.
Adverse Events At Least Possibly Related to PV-10 Administration

Protocol PV-10-MM-02 – 52 Weeks Follow-up, All Subjects (N=80)

Events occurring in less than two subjects and with severity < 3 not shown

<table>
<thead>
<tr>
<th>System Organ Class</th>
<th>Preferred Term</th>
<th>Adverse Events (by CTCAE Grade)</th>
<th>Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td></td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td></td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dysphagia</td>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injection site pain</td>
<td></td>
<td>29</td>
<td>30</td>
<td>7</td>
</tr>
<tr>
<td>Injection site oedema</td>
<td></td>
<td>22</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>Injection site vesicles</td>
<td></td>
<td>17</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Injection site discolouration</td>
<td></td>
<td>13</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Injection site swelling</td>
<td></td>
<td>14</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Injection site pruritus</td>
<td></td>
<td>14</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Injection site erythema</td>
<td></td>
<td>6</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Injection site inflammation</td>
<td></td>
<td>0</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Injection site photosensitivity reaction</td>
<td></td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Injection site ulcer</td>
<td></td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Injection site infection</td>
<td></td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Injection site cellulitis</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Injection site warmth</td>
<td></td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Injection site rash</td>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Wound secretion</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Oedema peripheral</td>
<td></td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Localised oedema</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Palliative care</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td></td>
<td>11</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

- Adverse events predominantly locoregional and mild to moderate
- No grade 4 or 5 events
Phase 2 – Preliminary Efficacy

Objective Response of Study Lesions

All Subjects (N=80)

<table>
<thead>
<tr>
<th>Best Response</th>
<th>Target Lesions</th>
<th>Bystander Lesions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (Subjects)</td>
<td></td>
</tr>
<tr>
<td>N (Subjects)</td>
<td>80</td>
<td>38</td>
</tr>
<tr>
<td>CR</td>
<td>19 (24%)</td>
<td>9 (24%)</td>
</tr>
<tr>
<td>PR</td>
<td>20 (25%)</td>
<td>5 (13%)</td>
</tr>
<tr>
<td>SD</td>
<td>18 (18%)</td>
<td>7 (18%)</td>
</tr>
<tr>
<td>PD</td>
<td>23 (23%)</td>
<td>17 (45%)</td>
</tr>
<tr>
<td>ND</td>
<td>--</td>
<td>42</td>
</tr>
<tr>
<td>CR + PR</td>
<td>39 (49%)</td>
<td>14 (37%)</td>
</tr>
<tr>
<td>CR + PR + SD</td>
<td>57 (71%)</td>
<td>21 (55%)</td>
</tr>
</tbody>
</table>

(Locoregional Disease Control)
Phase 2 – Preliminary Efficacy

% Change in Target Lesion Diameter

PD
SD
PR
CR
Phase 2 – Preliminary Efficacy

Regression of bystander lesions strongly correlated with response in target lesions
Objective Response of Bystander Lesions
Grouped According to Subject Objective Response of Target Lesions
All Subjects (N=80)

<table>
<thead>
<tr>
<th>Bystander Lesion Response</th>
<th>Subjects with POSITIVE Objective Response of Target Lesions</th>
<th>Subjects with NEGATIVE Objective Response of Target Lesions</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (Subjects)</td>
<td>18</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>CR</td>
<td>9</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PR</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PD</td>
<td>5</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>(21)</td>
<td>(21)</td>
<td></td>
</tr>
<tr>
<td>CR + PR</td>
<td>12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CR + PR + SD</td>
<td>13</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Response of each subject’s bystander lesions (overall subject response) as a function of the subject’s objective response of target lesions (POSITIVE Objective Response = CR + PR subjects; NEGATIVE Objective Response = SD + PD subjects). Statistical significance of response rates tested using the Chi-Square and Fisher Exact tests. Forty two subjects had no designated bystander lesion (or no assessable lesion) to assess (ND) and were censored.
Phase 2 – Response by Disease Stage

Objective Response of Target Lesions (by AJCC Stage)

All Subjects (N=80)

<table>
<thead>
<tr>
<th>Best Response (RECIST, N=80, through Week 52)</th>
<th>Unresectable Stage III</th>
<th>Stage IV M1a</th>
<th>Stage IV M1b</th>
<th>Stage IV M1c</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (Subjects)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>CR</td>
<td>15 (34%)</td>
<td>1 (50%)</td>
<td>3 (21%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>PR</td>
<td>13 (26%)</td>
<td>1 (50%)</td>
<td>3 (21%)</td>
<td>3 (27%)</td>
</tr>
<tr>
<td>SD</td>
<td>13 (24%)</td>
<td>0 (0%)</td>
<td>2 (14%)</td>
<td>3 (27%)</td>
</tr>
<tr>
<td>PD</td>
<td>12 (16%)</td>
<td>0 (0%)</td>
<td>6 (43%)</td>
<td>5 (45%)</td>
</tr>
<tr>
<td>CR + PR</td>
<td>28 (53%)</td>
<td>2 (100%)</td>
<td>6 (43%)</td>
<td>3 (27%)</td>
</tr>
<tr>
<td>CR + PR + SD</td>
<td>41 (77%)</td>
<td>2 (100%)</td>
<td>8 (57%)</td>
<td>6 (55%)</td>
</tr>
</tbody>
</table>

- Early systemic progression of M1b and M1c subjects led to early withdrawal and PD score
- OR for Stages III–IV (M1a) = 55% vs 49% for all subjects
Phase 2 – Survival

Progression Free Survival

All Subjects (N=80)

IIIB - IV (M1a) (N = 55)
Mean = 8.8 mo

IV (M1b-M1c) (N = 25)
Mean = 6.2 mo

P = 0.114

Time (months)

0 2 4 6 8 10 12 14

0.0 0.2 0.4 0.6 0.8 1.0

Majority of subjects censored due to progression of disease other than target lesions

- 6 subjects withdrawn at 4 wks or less, 18 prior to week 8
- Stage IIIB – IV(M1a) cohort: 67% of subjects censored
- Stage IV (M1b-M1c) cohort: 54% of subjects censored
Subject 0907: Male, 40, Stage IV (M1c) since 2006
Multiple Sx, CLND, whole brain XRT, stereotactic radiosurgery, DTIC, IV- and SQ-IFN.
Three treatments (Day 0, Wk 8 and Wk 12) with PV-10 to 10 cutaneous lesions: PR of injected lesions.

Interval progression of widespread 6–9 mm pulmonary mets at screening.
“Near complete resolution” of pulmonary nodules observed at Wk 12.
Leveraging Phase 2 – Expanded Access Protocols

- **PV-10-MM-02X**
 - Continuation protocol available to Phase 2 subjects
 - Evidence of response to PV-10
 - Disease not completely controlled under phase 2 design
 - Allows multiple treatments NLT 28 days apart
 - 10 subjects have crossed over from phase 2 study
 - Dose regimen similar to anticipated phase 3 RCT

- **PV-10-EA-02**
 - Expanded access for solid cutaneous or subcutaneous tumors
 - Trial program at existing Phase 2 centers
 - AUS: Sydney, Brisbane, Adelaide
 - USA: Bethlehem, Houston, Louisville
 - Dose regimen identical to PV-10-MM-02X protocol
 - 30 subjects have been enrolled
 - 29 melanoma + 1 rSCC
 - Enrollment continuing, anticipate up to 50 participants
Additional Phase 2 Studies

- **PV-10+XRT-01**
 - Follow-up to observations reported by Foote et al., Mel. Res. 2009
 - Unexpectedly robust response to XRT in refractive lesions 6-12 weeks after PV-10 treatment
 - Single center investigator-initiated study of PV-10 chemoablation followed by XRT
 - Single intralesional PV-10 dosing
 - If CR not achieved 6 fractions x 5 Gy at 6-10 weeks post-PV-10
 - Up to 25 subjects
 - Study approved for enrollment

- **Mechanism of Action**
 - Phase 2B study to fully validate bystander effect
 - Response in untreated proximal and visceral lesions consistent with immunologic process
 - PV-10 chemoablation yields immediate reduction in tumor burden
 - Ablation appears to recruit immune cells to exposed tumor antigens
 - Assess immune markers in peripheral blood and tumor tissue
 - Commence 1H-2011
Planned Phase III Trial

- **Phase 3 Randomized Controlled Trial (RCT)**
 - Incorporate guidance from FDA and TGA meetings for pivotal trial under SPA
 - PV-10 vs accepted comparator
 - Approximately 300 subjects
 - Stage IIIB to IV (M1a) based on phase 2 response data
 - Treatment of all injectable lesions to maximize response rate and long-term outcome
 - Durable response as primary endpoint
 - 12 month follow-up
 - Treatment regimen similar to ongoing expanded access protocol
 - Study duration ca. 30 months
 - Commence enrollment in 2011

- Investigators needed in AUS, USA and EU
Conclusions

PV-10 is well tolerated, eliciting a robust response in a majority of patients

- The safety and efficacy profile compare favorably with existing and emerging therapies
- Suitable for repeat treatment to maximize OR, ablate new lesions and enhance long-term outcome
- Non-responsive patients are quickly evident, avoiding delay in transition to alternate therapy
- Treatment of all injectable lesions likely to improve response rate and long-term outcome

Locoregional treatment may yield systemic benefit via the bystander effect

- PV-10 offers potential locoregional control of metastatic disease
- Bystander effect in untreated cutaneous lesions correlates closely with response of injected lesions
- Stasis or regression of visceral lesions evident in several subjects (“remote bystander effect”)
- Immunologic mechanism of action study planned to fully validate the bystander effect