Advancing A New Front In The War Against Cancer
Forward-Looking Statements

This presentation contains "forward-looking statements" as defined under U.S. federal securities laws. These statements reflect management’s current knowledge, assumptions, beliefs, estimates, and expectations and express management’s current views of future performance, results, and trends and may be identified by their use of terms such as "anticipate," "believe," "could," "estimate," "expect," "intend," "may," "plan," "predict," "project," "will," and other similar terms. Forward-looking statements are subject to a number of risks and uncertainties that could cause our actual results to materially differ from those described in the forward-looking statements. Readers should not place undue reliance on forward-looking statements. Such statements are made as of the date hereof, and we undertake no obligation to update such statements after this date. Risks and uncertainties that could cause our actual results to materially differ from those described in forward-looking statements include those discussed in our filings with the U.S. Securities and Exchange Commission. Provectus Biopharmaceuticals, Inc. (“Provectus”) assumes no obligation to update any forward-looking statements or information which speaks as to their respective dates. No claims with respect to PV-10 or PH-10 are intended regarding safety or efficacy in the context of the forward-looking statements contained in this presentation.
Our Goal

To have Provectus’ lead, advance, investigational oncology drug PV-10, an ablative immunotherapy made from an active pharmaceutical ingredient Rose Bengal, employed in the treatment of all solid tumor cancers:

– Before, during and after surgery
– In combination with other therapeutic agents and therapies
– After all else fails
Provectus Biopharmaceuticals

- Developing Rose Bengal-based drugs to treat cancer (PV-10) and inflammatory dermatoses (PH-10)
 - Clinical data thus far has shown robust efficacy with few side effects
- Founded in Knoxville, Tennessee in 2002 by 3 scientists from Oak Ridge National Laboratory, a U.S Department of Energy multi-program science and technology facility with a rich history of discovery and innovation

* Registration trial

CFDA (China Food and Drug Administration) is the regulatory agency for China

TGA (Therapeutics Goods Administration) is the regulatory body for therapeutic goods in Australia
Rose Bengal: A Unique Compound, with a Long History of Clinical Use

- A water-soluble dye created by Gnehm in 1882\(^1\)
- Approximately 1,000 Daltons in molecular weight
- A century of prior clinical use
 - Added to safranin victoria yellow for ocular pneumococcal infection (Römer, 1914)
 - A stain for visualizing corneal ulcers (Kleefeld, 1919)
 - A marker for impaired liver function (Delprat, 1925)
- An established FDA safety profile\(^2-^4\)
 - Intravenous hepatic diagnostic (Robengatope®)
 - Topical ophthalmic diagnostic (Rosettes® and Minims®)
- 3,720 medical literature citations, 235+ related to cancer\(^a\)

Therapeutic benefits remained hidden until the 1980s, when sufficient quantities were first administered in preclinical studies\(^4\)

\(^a\) PubMed search terms, “rose bengal” and “rose bengal cancer,” respectively, through January 2015

Our History

• 1986: “Dose-dependent survival increases in the mice receiving Rose Bengal”
 – In the 1980s, the FDA and Japanese Ministry of Health and Welfare scrutinized artificial food colorings
 – Japanese researchers, Ito et al., evaluated red food dye No. 105 (Rose Bengal) tumorigenicity

• 1998: Provectus’ multi-disciplinary team of founders — a molecular virologist, a chemical engineer, and a chemist — looking for drug candidates having antineoplastic activity separately came across Rose Bengal
 – A commercial data search identified several hundred candidates
 – Their own subsequent screening promptly zeroed in on Rose Bengal
 – Subsequent preclinical tests with bacterial and cancer cell lines quickly demonstrated Rose Bengal’s impressive cytotoxic activity
 – Follow-on animal and human studies confirmed Rose Bengal, delivered directly into tumors, was a selective and potent agent for ablating cancers and harnessing the immune system
PV-10’s Dual Mechanisms of Action

Primary Ablative Mechanism

- **Intralesional Injection**
- **Lysosomal Accumulation**
- **Lysosomal Disruption**
- **Autolytic Cell Death**

Ablation occurs in 1 to 2 hours, killing tumors into which PV-10 is injected by selectively passing through cell membranes and accumulating in lysosomes to force cell death with no biochemical action or effect.

Secondary Immunomodulatory Mechanism

- **Antigen Release**
- **APC Uptake**
- **T-cell Activation**
- **Bystander Tumor Destruction**

Immunomodulation occurs in 1 to 2 weeks, when cell death resulting from tumor injection attracts tumor-specific T cells and causes an up-regulating immune effect, which then leads to a systemic, tumor-specific immune response in untreated (“bystander”) tumors and distant disease.
Ablative Immunotherapy: A Two-Pronged Approach to Fighting Cancer

• Local Effect: Tumor ablation
 – The patient’s tumor burden is rapidly reduced after injection of PV-10 into cancerous lesions
 – Selective targeting by Rose Bengal minimizes side effects
 – Unlike many other cancer drugs, PV-10 does not rely on a single pathway to work, and has no known resistance

• Systemic Effect: Tumor-specific immune response
 – PV-10 causes regression of untreated tumors
 – Potentially prolongs Progression-free survival ("PFS")
 – Possible combination with immunomodulatory drugs and other systemic therapies for use in lesions that are inaccessible to a direct injection of PV-10
Metastatic Melanoma Phase 2 Trial

- International, multi-center (7 sites), single arm, phase 2 trial in 80 patients with refractory cutaneous melanoma
- Lesions were treated up to 4 times each over a 16-week period, and followed for 1 year
- Endpoints included: ORR, PFS, imaging of visceral metastases, quality of life
- Results: 82% locoregional disease control rate in evaluable patients

<table>
<thead>
<tr>
<th>Response in Target Lesion</th>
<th>All (N = 80)</th>
<th>Evaluable (N = 67)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Response (CR)</td>
<td>21 (26%)</td>
<td>20 (30%)</td>
</tr>
<tr>
<td>Partial Response (PR)</td>
<td>20 (25%)</td>
<td>21 (31%)</td>
</tr>
<tr>
<td>Stable Disease (SD)</td>
<td>14 (18%)</td>
<td>14 (21%)</td>
</tr>
<tr>
<td>Progressive Disease (PD)</td>
<td>25(^a) (31%)</td>
<td>12 (18%)</td>
</tr>
<tr>
<td>Overall response Rate (CR + PR)</td>
<td>41 (51%)</td>
<td>40 (61%)</td>
</tr>
<tr>
<td>Locoregional disease control (CR + PR + SD)</td>
<td>55 (69%)</td>
<td>56 (82%)</td>
</tr>
</tbody>
</table>

\(^a\) Includes 13 non-evaluable patients with disease progression prior to week 8

Most frequently reported adverse events at least possibly related to PV-10 below

<table>
<thead>
<tr>
<th>Injection Site Reactions</th>
<th>Mild (%)</th>
<th>Moderate (%)</th>
<th>Severe (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discoloration</td>
<td>13</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Erythema</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Edema</td>
<td>19</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>Pain</td>
<td>29</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>Pruritus</td>
<td>14</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Swelling</td>
<td>14</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Vesicles</td>
<td>17</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Headache</td>
<td>11</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

• Most adverse events were mild and moderate, and limited to the injection site

• Therapeutic effects were not limited to the injection site; systemic responses in non-injected (“bystander”) lesions were noted
 – Locoregional disease control of bystander lesions was achieved in 21 of 35 evaluable patients (60%)

• Mean PFS was >9.7 months for Stage III patients

• Evidence of activity was observed regardless of the disease burden at baseline

• Potential prognostic factors identified during the study included locoregional blistering, which was associated with markedly improved outcomes
MM Phase 2 Trial: Clinical Example

- Male, age 86, Stage IIIC, multiple subcutaneous metastases that recurred after surgery and radiotherapy
- Single treatment with 1.2 mL PV-10 to 1 lesion
 - 3 untreated bystander lesions
- Complete remission at week 18
- No evidence of disease at 28 months
MM Phase 2 Trial: Clinical Example (cont’d)

- Male, age 57, Stage IIIB melanoma that recurred after 3 surgeries
- All 6 lesions injected with 3.2 mL PV-10, additional injections in some lesions at weeks 8 and 24
- Complete remission at week 24
- No evidence of disease at the end of study (week 52) months

PV-10’s Melanoma Program Has Global Visibility

- Phase 2 final data for metastatic melanoma
 - ESMO 2012 in Vienna, Austria
 - ECCO 2013 in Amsterdam, Netherlands
 - EADO 2014 in Vilnius, Lithuania
 - ESMO 2014 in Madrid, Spain
 - ASCO 2014 in Chicago

- Phase 1 mechanism of action data for melanoma, Poster Highlight Session at ASCO 2014

- Preclinical PV-10 and co-inhibitory blockade combination data, SITC 2014 in National Harbor (Maryland)

- 2015: Sponsored and participated at AAPI’s Global Healthcare Summit in Mumbai, India
 - Will sponsor and participate at AAPI’s Annual Conference in Orlando
Independently Reproduced & Repeated

SSO: “Intralesional PV-10 treatment leads to the induction of tumor specific immunity.”

AACR: “These murine studies confirm that PV-10 chemoablation results in both a direct effect on injected lesions as well as a systemic response that leads to regression of uninjected subcutaneous and lung lesions”

AACR: “IL PV-10 can induce tumor-specific responses in treated and untreated lesions that correlates with increased T cells in PBMCs of melanoma patients. Treatment with PV-10 leads to necrosis of melanoma, but not normal cells. IL PV-10 increases DC infiltration into tumor-draining LNs”

ASCO: “IL PV-10 leads to responses in treatment-refractory tumors. IL PV-10 may be rationally combined with systemic immunotherapy for the treatment of metastatic melanoma”

SITC: “These murine studies support combination therapy with IL PV-10 and co-inhibitory blockade.”

Only PV-10 provided by Provectus for experiments
Pivotal Melanoma Phase 3 Trial

- Multicenter, randomized, controlled trial in patients with unresectable locally advanced melanoma with disease confined to cutaneous/subcutaneous sites
- Patients randomized to PV-10 or systemic chemotherapy
- Primary endpoint: Progression-free survival
- Secondary endpoints: Complete response rate (CR) and overall survival (OS)
- Initial sites will include those with current compassionate use programs
 - Additional sites will be added
- Study starts: Q1 2015

Eligible patients: n = 225 (planned)

Randomization: 2:1

PV-10: n = 150

Systemic CT: n = 75

Endpoints:
- Primary: PFS
- Secondary: CR, OS

There is an additional site that has not been named because it is not listed on clinicaltrials.gov
Pivotal Melanoma Phase 3 Trial, cont’d

• On January 29, 2015, a Type C meeting with FDA was held to review certain operational aspects of the trial protocol.

• The meeting was agreed to with the FDA to assure that the trial protocol-related questions Provectus had were addressed in a timely and comprehensive manner.

• Topics formally reviewed included subject eligibility requirements, primary and secondary study end points, and study lesion definitions and conventions for defining disease progression.

• Study director, and CTO of Provectus, Eric Wachter, PhD noted:
 – “We are extremely grateful for the careful review conducted by the Agency. The outcome of the review does not affect the fundamental design of the study nor the patient population, but does affect certain details concerning some secondary end points and statistical analysis matters, such as the treatment of missing data. We are making a number of small changes to the protocol in light of this review, and will issue a final version later this month.”

• The study is expected to start enrollment quickly after completion of the review period, as Dr. Wachter commented:
 – “We have eight sites, four in the US and four in Australia, in our expanded access program currently using PV-10 for melanoma and other cutaneous malignancies. We expect that they will provide a path to quickly starting enrollment upon completion of the review period. In addition, we have been qualifying additional sites that will join the study pending action by their respective Institutional Review Boards.”

• Phase III trial will commence upon submission of the revised protocol at the end of February.

• No further review is necessary with the FDA.

For further details regarding the study, please visit: https://clinicaltrials.gov/ct2/show/NCT02288897?term=pv-10&rank=5
PV-10: Compassionate Use Program

- 2009: Our compassionate use program for PV-10 began at certain Australian Centers of Excellence, and later expanded to the United States
 - More than 100 patients treated (2013 YE)
 - Available for cancer indications that do not involve visceral organs, and patients who are not subject to enrollment in ongoing clinical trials

- Participating sites:
 - St. Luke’s Hospital and Health Network - Bethlehem, PA
 - M.D. Anderson Cancer Center – Houston, TX
 - University of Louisville – Louisville, KY
 - Sharp Memorial Hospital – San Diego, CA
 - Melanoma Institute Australia – Sydney, Australia
 - Princess Alexandria Hospital – Brisbane, Australia
 - Royal Adelaide Hospital – Adelaide, Australia
PV-10: Treatment & Commercial Channel

• Outpatient setting
 – No pre-treatment or post-treatment care required
 – Well-tolerated, minimally invasive, intratumoral injections
 – No co-treatment needed
 – Minimal adverse impact on quality of life

• Treatment decision: Medical or Surgical Oncologist

• Treatment delivery: Performed by Interventional Oncologist

• Anticipated reimbursement
 – Chemotherapy
 – Procedure

• Potential driver of adoption
Intellectual Property

• Key foundational patents, patent applications, and trade secrets
 – Rose Bengal and all other halogenated xanthenes
• Synthesis patent, applications and geographies
 – The process under which pharmaceutical grade Rose Bengal and related xanthenes are produced in accordance with International Conference on Harmonisation (ICH) guidelines
 – Approved in the U.S., allowed in China, and filed in multiple other global jurisdictions
• Combination therapy patent application
 – The treatment combination of PV-10 and immunomodulatory therapeutic agents (including, anti-CTLA-4, -PD-1 and PD-L1 compounds)
PV-10: Commercial Strategy

• Leverage global opportunity for PV-10
 – PV-10 is a platform technology for solid cancers, and has shown preclinical or clinical activity in many types of solid tumors

• Build partnerships in selected geographies
 – Control the supply chain
 – Actively participate in the commercialization of the drug

• Pursue business development initiatives both of internal and external origin, as well as advance our multi-indication clinical development program, prior to obtaining interim randomized data for PV-10

• Obtain interim randomized data for PV-10 before signing a global agreement to provide the greatest ROA for Provectus and ROI for our shareholders
The Opportunity to Make a Global Impact

Ablative immunotherapy

Safe • Tissue sparing

Locally effective • Systemic effective

Multi-indication viability

Synergistic combinations

Ease of physician use • Patient compliance

Easy to use, re-use, ship, store and handle

Globally affordable
Significant Progress Made to Advance PV-10 Clinical Development

- PV-10 (Rose Bengal Disodium, 10%) for direct injection into solid tumors
- Strategy: Demonstrate broad spectrum efficacy for multiple cancer indications
 - Currently studied in melanoma, liver and breast cancer
 - Planned new indications include pancreatic and bladder cancer

<table>
<thead>
<tr>
<th>Indication</th>
<th>Pre-Clinical</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Status</th>
</tr>
</thead>
</table>
| Melanoma | | ✍️PV-10 | | | • Orphan drug status January 2007
 • Phase 1 and 2 studies completed, full reports submitted
 • Protocol for phase 3 study allowed by FDA, patient recruitment to begin soon
 • Phase 1b/2 combination study of PV-10 + immune checkpoint blockade planned |
| Melanoma (Mechanism of Action) | | ✍️PV-10 | | | • Phase 1 study to detect immune cell infiltration into melanomas treated with PV-10 initiated |
| Liver Metastasis | | ✍️PV-10 | | | • Orphan drug status April 2011
 • Phase 1 patient accrual and treatment completed
 • Phase 1 protocol expansion (Sep 2012 into 2014)
 • Phase 1b/2 study being planned |
| Breast Cancer | | ✍️PV-10 | | | • Phase 1 study completed
 • Further clinical development is being planned |

Please visit www.pvct.com/pipeline.html for more information
PV-10: Systemic Effect and Combination Strategies

- The unique mode of action and distinctive safety profile of PV-10 creates a potential for combinations with many systemic therapies, including immune checkpoint inhibition
 - Tumor-specific immune activation by PV-10 can be complemented by systemic induction of tumor cell immunity\(^1\)
 - For inaccessible lesions, the combination of PV-10 with immune checkpoint blockade has important potential for synergy

PV-10: Systemic Effect and Combination Strategies, cont’d.

- A study in mice conducted by Moffit Cancer Center (Tampa, FL) supported combination therapy with PV-10 and immune checkpoint inhibitors\(^1\)

- Cotreatment anti-CTLA-4/PV-10 antibodies suggested reduced tumor growth with combination therapy in mice\(^1\)
 - Evidence of activity was also observed with anti-PD-1 and anti-PD-L1 antibodies

- Pro vectus has joint patent application with Pfizer “Combination of Local and Systemic Immunomodulative Therapies for Enhanced Treatment of Cancer”\(^2\)

PV-10: Clinical Program – Next Steps

- **Melanoma**
 - Initiate pivotal phase 3 RCT and assess expedited development with FDA for approval via Fast Track or otherwise, TGA
 - Complete additional immunology studies (MOA) via Moffitt Cancer Center

- **Liver**
 - Complete expanded phase 1 trial, which has provided promising interim results:
 - After single, direct injection into the tumor substantial tumor ablation with maintained regression, no disease at 9-15 month check-up
 - Commence phase 1b/2 study in 2015; further discussion this quarter Q1 2015
 - Meet with FDA to review expedited approval path as appropriate

- **Other Oncology**
 - Investigate new indications
 - Continue to development for patients with recurrent breast carcinoma and various liver metastases

- **Continue compassionate use programs**
PV-10: Summary

- Unique, dual mode of action in cancer
 - Rapid, durable, complete tumor destruction
 - Activation of a systemic tumor-specific immune response
- Rapid response, robust efficacy, and good safety profile
- Broad potential patient population
 - No known resistance, can be re-used, multi-indication viability
- Potential for synergistic combinations
- Significant progress made in the clinical program, and already in use by more than 100 patients through compassionate use program
- FDA Orphan designation in 2 indications

“Various injection therapies for melanoma have been examined over the past 40 years, but few have shown the promising results we are seeing with PV-10”

Shari Pilon-Thomas, PhD
Assistant member
Immunology Program
Moffitt Cancer Center

PH-10: Dermatology

- PH-10 is a hydrogel formulation of Rose Bengal for direct application to skin
- Initially developed for psoriasis and atopic dermatitis (eczema)
 - Plans to develop for all inflammatory dermatoses
- Robust positive response comparable to competitors
- Advantages:
 - Little or no systemic uptake and negligible side effects
 - No substantial rebound after 4 weeks unlike steroids
 - No immuno-suppressant characteristics and no skin thinning evident
 - Potential for repeated use
 - No prolonged photosensitivity
PH-10: Development Status

Clinical Status:

<table>
<thead>
<tr>
<th>Indication</th>
<th>Pre-Clinical</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psoriasis</td>
<td></td>
<td></td>
<td>PH-10</td>
<td></td>
<td>• Phase 2c randomized study completed and full report submitted to FDA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Toxicity study R&D for advanced studies 2012 to 2014</td>
</tr>
<tr>
<td>Psoriasis (Mechanism of Action)</td>
<td></td>
<td></td>
<td>PH-10</td>
<td></td>
<td>• Phase 2 randomized study initiated Jan 2015 by leading research facility</td>
</tr>
<tr>
<td>Atopic Dermatitis</td>
<td></td>
<td></td>
<td>PH-10</td>
<td></td>
<td>• Phase 2 study completed and full report submitted to FDA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Toxicity study R&D for advanced studies 2012 to 2014</td>
</tr>
</tbody>
</table>

Please visit www.pvct.com/pipeline.html for more information

Business Development Status:
Licensure talks underway
Management

Craig Dees, PhD, Chief Executive Officer
• More than 20 years in senior positions at Oak Ridge National Laboratory and with numerous start-up companies
• Product design and development leadership: Ethical vaccines, Cosmetics, Human diagnostics, Over-the-counter pharmaceuticals

Timothy Scott, PhD, President
• Served in senior management positions at Photogen Technologies, Genase and Oak Ridge National Laboratory
• Holder of 16 US patents; Co-founder of and Senior Scientist, Vice President and Chief Operating Officer at Photogen Technologies

Eric Wachter, PhD, Chief Technology Officer
• Senior positions at Photogen Technologies and Oak Ridge National Laboratory
• Holder of more than 15 US patents, Multiple awards for scientific excellence

Peter R. Culpepper, CPA, MBA, Chief Financial Officer/Chief Operating Officer
• More than 20 years of finance experience and working with high-growth start-up companies
• Led the national operating unit of a $1 billion publicly traded telecom company
• Previously worked at Neptec, Metromedia Companies and PageNet
Board Members

Board of Directors

Craig Dees, PhD, CEO and Chairman

Timothy Scott, PhD, President

Jan E. Koe

Kelly M. McMasters, MD, PhD (Scientific Advisory Board)

Alfred E. Smith IV

Strategic Advisory Board

Seth Orlow, MD, PhD Professor of Dermatology, Cell Biology and Pediatrics and Chairman of NYU School of Medicine’s Ronald O. Perelman Department of Dermatology.

David Darst. Chief Executive Officer of Rgenix since 2013

Craig Eagle, MD Head of the Oncology therapeutic area global medical group for Pfizer

Doug Ulman. President and Chief Executive Officer of LIVESTRONG

Paul M. Goldfarb, MD, F.A.C.S. Surgical Oncologist in San Diego

Joseph M. Chalil, MD, MBA, FACHE Associate Director, Health Science Executives of Boehringer Ingelheim

Brendan O’Brien. Vice President of Strategic Planning & Analysis for North American Pharmaceuticals at Sanofi

Jacob M. Plotsker. Director of IUS Strategy and Lifecycle Management at Bayer Healthcare

Christopher Kaplan. President of Cajetan, LLC

Deanna Angello. Director, Commercial Strategy and New Business Planning for the Global Pharma business at Pfizer Inc.
Key Facts

<table>
<thead>
<tr>
<th>Description</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
<td>PVCT</td>
</tr>
<tr>
<td>Headquarters</td>
<td>Knoxville, Tennessee</td>
</tr>
<tr>
<td>Share Price (Current)</td>
<td>$0.84</td>
</tr>
<tr>
<td>Shares Outstanding (2/3/2015)</td>
<td>180 million</td>
</tr>
<tr>
<td>Market Capitalization</td>
<td>$151 million</td>
</tr>
<tr>
<td>Average Daily Volume (3-month)</td>
<td>433,332 shares</td>
</tr>
<tr>
<td>Cash (Current)</td>
<td>$18.1+ million</td>
</tr>
<tr>
<td>Cash Burn Rate</td>
<td>Cash on hand supports planned operations until 2016</td>
</tr>
<tr>
<td>Management Beneficial Ownership</td>
<td>14.0%</td>
</tr>
<tr>
<td>Full-time Employees</td>
<td>4</td>
</tr>
<tr>
<td>Fiscal Year-End</td>
<td>December 31</td>
</tr>
<tr>
<td>Number of Patents</td>
<td>US: 25+, International: 30+</td>
</tr>
<tr>
<td>External Auditors</td>
<td>BDO USA, LLP</td>
</tr>
<tr>
<td>Legal Counsel</td>
<td>Baker, Donelson, Bearman, Caldwell & Berkowitz, PC</td>
</tr>
<tr>
<td>Transfer Agent</td>
<td>Broadridge Corporate Issuer Solutions</td>
</tr>
</tbody>
</table>
Plans for 2015

PV-10 ONCOLOGY
- *Melanoma*: Initiate pivotal Phase 3 RCT and assess expedited development with the FDA, TGA, Immunology studies (MOA) via Moffitt Cancer Center
- *Melanoma*: Design of a combination Phase 1b/2 study is underway
- *Liver*: Commence Phase 1b/2 study
- Continue expanded access/compassionate use program
- Investigate new indications
- Look to secure regional licensees (with China, or India, or Japan, or Korea) ahead of other territories (chiefly Europe/US) with major pharmaceutical company

PH-10 DERMATOLOGY
- Report Phase 2C results, end-of-Phase 2 FDA meeting, toxicology
- Continue MOA studies via leading research facility
- Complete pharmaceutical licensure talks at appropriate valuation
Summary – Provectus Biopharmaceuticals

• Committed to develop Rose Bengal-based drugs to treat cancer and inflammatory dermatoses
 – PV-10 is an anticancer drug with great global potential
 • Significant progress made in the clinical program,
 • Already in use by more than 100 patients through compassionate use program
 • Has orphan drug status in 2 different indications
 • Potential to be used in multiple other oncologic indications
 – PH-10 is being developed for dermatologic indications
 • Robust clinical response and important safety advantages
• Listed in NYSE MKT with 180 million outstanding shares
• Enough cash on hand to support planned operations until 2016
• Current focus is establishing paths to licensure, broadening clinical applications and expanding business development
Contact Information

Provectus Biopharmaceuticals

Peter R. Culpepper, CFO, COO
+1 (866) 594-5999 ext. 30

Porter, LeVay & Rose

Marlon Nurse, DM, SVP, Investor Relations
+1 (212) 564-4700

Bill Gordon, Media Relations
+1 (212) 724-6312

www.pvct.com