Overview

• Introduction

• Current data with agents in development
 – TVEC (phase III reported)
 – PV-10 (phase III ongoing)
 – Others (phase II)

• Future prospects and perspective
Why Consider Intrallesional Therapy?

• Metastatic melanoma involves cutaneous metastases in a high percentage of patients accessible to injection

• Loco-regional control is clinically important
 – In transit disease
 – Local regional recurrence without distant metastases
Local/Satellite/In-transit metastases

Spectrum of Regional Metastases (AJCC IIIb/IIIc)

6%-12% of primary melanoma
- high risk groups: thick, ulcerated, and positive SLN, lower extremity
Source of significant morbidity
Greater than 50% risk for distant disease and death
(Courtesy: Merrick Ross, MD)
Treatment Options for Regional Disease

• Surgery
 – resection for limited disease
 – amputation

• Topical agents
 – imiquimod

• Extremity Regional Chemotherapy
 • Isolated limb perfusion/infusion

• Systemic therapy

• Intra-lesional therapy
Potential Goals of Intralesional Therapy

• Local disease control
 – Durable tumor shrinkage
 – Symptom control and palliation
• Systemic effect
 – Immune mediated
• Delay or prevent systemic therapy
• Neoadjuvant potential
Intralesional agents in development in melanoma

<table>
<thead>
<tr>
<th>Preclinical</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Alpha-gal glycolipids</td>
<td>• HF-10 (HSV-1)</td>
<td>• Coxsackievirus A21 (Cavatak)</td>
<td>• Velimogene aliplasmid (Allovectin-7)</td>
</tr>
<tr>
<td>• OrienX010 (hGM-CSF HSV-1)</td>
<td>• Retroviral IFN-γ</td>
<td>• Adenovirus expressing IL-2</td>
<td>• Talimogene laherparepvec (T-VEC, formerly OncoVEX<sup>GM-CSF</sup>)</td>
</tr>
<tr>
<td>• Canarypox virus expressing B7.1 and IL-12</td>
<td>• Adenovirus expressing IFN-γ</td>
<td>• GM-CSF</td>
<td>• Recombinant vaccinia virus expressing B7.1</td>
</tr>
<tr>
<td>• Adenovirus expressing IFN-γ</td>
<td>• Recombinant vaccinia virus expressing B7.1</td>
<td>• BCG</td>
<td>• Ganglioside D2 mAb</td>
</tr>
<tr>
<td>• Plasmid encoding IL-12</td>
<td>• Plasmid encoding IL-12</td>
<td>• IL-2</td>
<td>• Plasmid encoding IL-12</td>
</tr>
<tr>
<td>• Alpha-immunoconjugate of vector 9.2.27 with 213Bi radioactive Ab</td>
<td>• Polylactic acid microspheres with IL-12 +/- IL-18</td>
<td>• IL-12</td>
<td>• Polylactic acid microspheres with IL-12 +/- IL-18</td>
</tr>
<tr>
<td>• Coxsackievirus A21 (Cavatak)</td>
<td>• PV-10 (Rose Bengal)</td>
<td>• PV-10 (Rose Bengal)</td>
<td>• VMIP-10 (Rose Bengal)</td>
</tr>
<tr>
<td>• KORTUC II</td>
<td>• Monkey fibroblast Vero cells producing human IL-2</td>
<td>• Intralrostal GM-CSF + subcutaneous IL-2</td>
<td>• Intralrostal GM-CSF + subcutaneous IL-2</td>
</tr>
<tr>
<td>• Intralrostal IL-2 and topical imiquimod</td>
</tr>
</tbody>
</table>

Courtesy of Robert Andtbacka, MD
Overview

• Introduction

• Current data with agents in development
 – TVEC (phase III reported)
 – PV-10 (phase III ongoing)
 – Others (phase II)

• Future prospects and perspective
T-VEC: an HSV-1-derived oncolytic immunotherapy designed to produce both local and systemic effects

Local effect: tumour cell lysis

Systemic effect: tumour-specific immune response

Selective viral replication in tumour tissue

Tumour cells rupture for an oncolytic effect

Systemic tumour-specific immune response

Death of distant cancer cells

T-VEC key genetic modifications:
JS1/ICP34.5-/ICP47-/hGM-CSF

CMV, cytomegalovirus; hGM-CSF, human granulocyte-macrophage colony-stimulating factor; HSV-1, herpes simplex virus type 1; ICP, infected cell protein; pA, polyadenylation (from bovine growth hormone).

OPTiM phase III study design

Injectable, unresectable Stage IIIB-IV melanoma

T-VEC intralesional up to 4 mL Q2W*
\(n = 295 \)

GM-CSF Subcutaneous
14 days of every 28-day cycle*
\(n = 141 \)

Primary Endpoint:
- Durable response rate
 (Defined as objective response lasting for at least 6 months)

Key Secondary Endpoints
- OS
- ORR
- Time to treatment failure (TTF)
- Safety

Randomization stratification:
1. Disease substage
2. Prior systemic treatment
3. Site of disease at first recurrence
4. Presence of liver metastases

- Patients enrolled between May 2009 and July 2011
- Patients enrolled at 64 sites in USA, UK, Canada, and South Africa

* Dosing of intralesional T-VEC was \(\leq 4 \text{ mL} \times 10^6 \text{ pfu/mL} \) once, then after 3 weeks, \(\leq 4 \text{ mL} \times 10^8 \text{ pfu/mL} \) every two weeks (Q2W).
Dosing of GM-CSF was 125 \(\mu \text{g/m}^2 \) subcutaneous daily x 14 days of every 28 day cycle.

OPTiM phase III study results

Primary endpoint: durable response rate per EAC*

Secondary endpoint: objective response per EAC

<table>
<thead>
<tr>
<th>ITT set</th>
<th>GM-CSF (n = 141)</th>
<th>T-VEC (n = 295)</th>
<th>Treatment difference (T-VEC – GM-CSF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durable response rate</td>
<td>2.1%</td>
<td>16.3%</td>
<td>14.1%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>95% CI (8.2, 19.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P < 0.0001 (unadjusted odds ratio 8.9)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ITT Set</th>
<th>GM-CSF (n = 141)</th>
<th>T-VEC (n = 295)</th>
<th>Treatment difference (T-VEC – GM-CSF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective overall response (95% CI)</td>
<td>5.7% (1.9, 9.5)</td>
<td>26.4% (21.4, 31.5)</td>
<td>20.8% (14.4, 27.1) P < 0.0001 descriptive</td>
</tr>
<tr>
<td>CR</td>
<td>0.7%</td>
<td>10.8%</td>
<td></td>
</tr>
<tr>
<td>PR</td>
<td>5.0%</td>
<td>15.6%</td>
<td></td>
</tr>
</tbody>
</table>

*Rate of CR or PR that began at any point within 12 months of initiation of therapy and lasted continuously for 6 months or longer.

Determined using modified WHO criteria by an independent, blinded endpoint assessment committee (EAC).

ITT, intention to treat; CI, confidence interval.

Secondary endpoint: primary overall survival

<table>
<thead>
<tr>
<th>Survival</th>
<th>T-VEC (%)</th>
<th>GM-CSF (%)</th>
<th>Difference, % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-mo</td>
<td>73.7%</td>
<td>69.1%</td>
<td>4.6 (-4.7, 13.8)</td>
</tr>
<tr>
<td>24-mo</td>
<td>49.8%</td>
<td>40.3%</td>
<td>9.5 (-0.5, 19.6)</td>
</tr>
<tr>
<td>36-mo</td>
<td>38.6%</td>
<td>30.1%</td>
<td>8.5 (-1.2, 18.1)</td>
</tr>
<tr>
<td>48-mo</td>
<td>32.6%</td>
<td>21.3%</td>
<td>11.3 (1.0, 21.5)</td>
</tr>
</tbody>
</table>

Events/n (%)
T-VEC: 189/295 (64)
GM-CSF: 101/141 (72)
Median, months
T-VEC: 23.3 (19.5, 29.6)
GM-CSF: 18.9 (16.0, 23.7)
HR = 0.79 (95% CI: 0.62, 1.00)
Unadjusted log-rank P = 0.051

Kaplan–Meier percent

Median follow-up: 44.4 months (range: 32.4–58.7)

PV-10 (Rose Bengal)

- PV-10 is a sterile, non-pyrogenic solution of Rose Bengal disodium (10% RB) for intralesional injection
 - RB is a **small molecule** Fluorescein derivative attributed to Gnehm in 1882
 - **Prior human use** of RB
 - IV hepatic diagnostic, 131I radiolabeled RB: Robengatope®
 - Topical ophthalmic diagnostic: Rosettes® and Minims®
 - **Established safety history**
 - Not metabolized
 - Short circulatory half-life (ca 30 min)
 - Excretion via bile
 - **Radiopaque** with prolonged retention in tumors
PV-10 (Rose Bengal)

Mechanism of action

- PV-10
 - Accumulates in lysosomes of cancer cells
 - -> acute autophagy
 - -> acute exposure of antigenic tumor fragments to APCs.
- Excluded from normal cells

PV-10 Phase II Trial

• 80 patients, open label, single arm
• Stage III and IV melanoma (Aug 2007 – May 2009)
• Response (all patients):
 – Target lesions: 51% (26% CR, 25% PR)
 – Non-target lesions: 33% (26% CR, 7% PR)
• PFS:
 – Responders 11.4 mo
 – Non-responders 4.1 mo
 – Local / regional disease longer PFS compared to distant metastases
• Adverse reactions mild / moderate

Thompson JF, Agarwala, SS et al., Ann Surg Oncol, 2014
PV-10 response in Target lesions (Phase II)

Rapid early progression led to PD/NEV assignment in 13 subjects

Robust response in Stage III subjects

PV-10 Phase III Trial

 Patients with Locally Advanced Cutaneous Melanoma

 Randomize (2 : 1)^a

 Active Arm
 PV-10 q4w

 Comparator Arm
 DTIC or TMZ q4w

 RECIST q12w
 PR/SD

 Long-term Follow-up

 CR/PD^b

 a. 225 patients randomized 2:1 (stratified for prior immune checkpoint inhibition)
b. Cross-over allowed upon documented PD in comparator arm
Intratumoral DNA-encoded IL-12 Electroporation

1. Cancer Cells
2. DNA IL-12 Injected
3. Electroporation
4. DNA IL-12 Enters
5. IL-12 Protein Expression
6. Initiation of Local Pro-Inflammatory Process
7. Targeted Anti-Tumor Immune Response & Lymphocyte Education
8. Systemic Anti-Tumor Immune Response
Plasmid encoded DNA IL-12 Electroporation

Phase II study (interim analysis, n=28)

- Primary endpoint ORR 24 wks
 - OR 32% (9/28)
 - CR 11% (3/28)

- Lesion responses (n=85)
 - SD 31% (26/85)
 - PR 8% (7/85)
 - CR 45% (38/85)

- Response untreated lesions
 - 59% (13/22 patients)

Responses in electroporated and non-electroporated lesions

Daud AI, et al. ASCO 2014, Abstract 9025
Phase 2 Efficacy: pIL-12 EP Monotherapy

Response Category

<table>
<thead>
<tr>
<th>Category</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Response (CR)</td>
<td>4 (14%)</td>
</tr>
<tr>
<td>Partial Response (PR)</td>
<td>5 (17%)</td>
</tr>
<tr>
<td>Stable Disease (SD)</td>
<td>5 (17%)</td>
</tr>
<tr>
<td>Progressive Disease (PD)</td>
<td>15 (52%)</td>
</tr>
<tr>
<td>Overall Response Rate (CR + PR)</td>
<td>9 (31%)</td>
</tr>
<tr>
<td>Disease Control Rate (CR + PR + SD)</td>
<td>14 (48%)</td>
</tr>
</tbody>
</table>

*by Modified “Skin” RECIST

**SD required to last for at least 90 days

Coxsackievirus A21 (CVA21)

CALM Phase II trial: Best percentage change in target lesions* (investigator assessed)

- Analysis excludes patients satisfying protocol criteria but not on study long enough for 6 week tumor response assessment;
- CR=Complete response, PR= Partial response, SD= Stable disease and PD= Progressive disease

Andtbacka et al. World Melanoma Congress 2013
Spontaneous mutant strain of HSV-1 with no external gene.

- Greater replication ability = effective dose is lower
- No toxicity to be caused by exogenous gene (ex. GM-CSF) inserted.

- Attenuation of neurovirulence to be attributable to the lack of the UL56 gene.

- In addition to local oncolytic tumor destruction, systemic anti-tumor immune response observed.
Title of the study
A Phase II Study of Combination Treatment with HF10, a Replication-competent HSV-1 Oncolytic Virus, and Ipilimumab in Patients with Stage IIIB, Stage IIIC, or Stage IV Unresectable or Metastatic Malignant Melanoma

Objectives
To assess efficacy and safety with repeated administration of intratumoral injections of HF10 at 1×10^7 TCID$_{50}$/mL in combination with intravenous infusions of 3mg/kg ipilimumab and evaluate the following objectives:

Primary Objective:
Best overall response rate (BORR) at Week 24

Secondary Objectives:
Safety and tolerability, ORR, PFS, DRR, 1-year survival rate, Evaluation of correlative studies

of patients
Planned 43 patients

Methodology
single arm, open label Phase II trial

Investigators
Robert Andtbacka, University of Utah, Huntsman Cancer Institute
Sanjiv S. Agarwala, St. Luke's University Hospital and Temple University
and 6 other sites
Overview

• Introduction

• Current data with agents in development
 – TVEC (phase III reported)
 – PV-10 (phase III ongoing)
 – Others (phase II)

• Future prospects and perspective
The future of intra-lesional therapy probably lies in combinations
How do we assess IL monotherapy?

• Is there a role for monotherapy in today’s melanoma landscape?
• What is the correct endpoint for clinical trials?
• What should be the control arm?
T-VEC + ipilimumab Phase Ib trial (20110264)

Stage IIIB/C–IV M1c melanoma not suitable for surgical resection, no prior systemic treatment (except adjuvant treatment)

Talimogene laherparepvec up to 4 mL
10⁶ pfu/mL Wk1 D1,
10⁸ pfu/mL Wk4 D1 & then Q2W
+ ipilimumab 3 mg/kg
Q3W x 4 starting Wk6 D1
N = 19

Screening 28 days prior to enrollment

T-VEC dosing until CR, all injectable tumours disappeared, PD per immune-related response criteria, or intolerance for treatment, whichever comes first.

Primary endpoint: Incidence of dose-limiting toxicities
Secondary endpoints: ORR, safety: all AEs, Grade ≥ 3 AEs, serious AEs, events requiring discontinuation of study drug, events with local effects on tumours (pain, inflammation, and ulceration)

30 (+7) days after last dose of T-VEC or
60 (+7) days after last dose of ipilimumab

Up to 24 months after end of randomization

TVEC + ipi: Maximal change in tumor burden

Patients (N = 17)^b

Investigator-assessed responses

<table>
<thead>
<tr>
<th>Response</th>
<th>N</th>
<th>%</th>
<th>(95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall response</td>
<td>10</td>
<td>56%</td>
<td>31–79%</td>
</tr>
<tr>
<td>Complete response</td>
<td>6</td>
<td>33%</td>
<td></td>
</tr>
<tr>
<td>Partial response</td>
<td>4</td>
<td>22%</td>
<td></td>
</tr>
<tr>
<td>Stable disease</td>
<td>3</td>
<td>17%</td>
<td></td>
</tr>
<tr>
<td>Progressive disease</td>
<td>5</td>
<td>28%</td>
<td></td>
</tr>
</tbody>
</table>

Efficacy analysis set includes only the patients who received both T-VEC and ipilimumab.

One patient assessed to have PD by the investigator was not shown in the plot because tumor burden could not be accurately calculated based on missing post-baseline data.

NCT02263508: Phase Ib/II Study of Pembrolizumab + T-VEC

Key Objective: Evaluate the safety (phase Ib) and efficacy (phase II) of pembrolizumab + T-VEC in patients with previously untreated, unresected, Stage IIIB to IVM1c melanoma.

Primary Outcome Measures:
- Incidence of DLTs (Phase Ib)
- Confirmed ORR (Phase II)

Secondary Outcome Measures:
- Incidence of AEs
- ORR (Phase Ib)
- Best ORR
- Durable response rate
- DoR
- PFS
- OS

Phase Ib
- Pembrolizumab Q2W + T-VEC

Phase II, Part 1
- Pembrolizumab Q2W + T-VEC

Phase II, Part 2
- Pembrolizumab Q2W

Progression
- Pembrolizumab Q2W + T-VEC*

Estimated Enrollment: 110
Study Start Date: October 2014
Estimated Study Completion Date: February 2019
Estimated Primary Completion Date: November 2016 (Final data collection date for primary outcome measure)

T-VEC Neoadjuvant Treatment with Surgery vs. Surgery Alone
Phase 2 surgically resectable stage IIIB/C/IVM1a melanoma (20110266)

Arm 1
Talimogene laherparepvec up to 4 mL 10^6 PFU/mL week 1 followed by 10^8 PFU/mL week 4 then every 14 (± 3) days until week 12 followed by surgical resection of melanoma lesion(s) anytime during weeks 13 to 18*

N = 75

Arm 2
Immediate surgical resection of melanoma lesion(s) any time during weeks 1 to 6

N = 75

Primary endpoint: Recurrence-Free Survival (RFS)
Secondary endpoints: OS, overall tumor response and tumor response in injected and uninjected lesions (T-VEC arm only), Rates of R0 resection and pathological CR, Local RFS, Distant metastases-free survival, safety

Current Melanoma Landscape: Is there a role for IL monotherapy?

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not all patients candidates for systemic therapy (co-morbidities, toxicity)</td>
<td>Systemic therapies in 2015 are safe and effective</td>
</tr>
<tr>
<td>After progression on other therapies</td>
<td>Melanoma is a systemic disease</td>
</tr>
<tr>
<td>Alternative to surgery?</td>
<td>Surgery is an instant CR</td>
</tr>
<tr>
<td>Neoadjuvant potential</td>
<td>Not yet proven</td>
</tr>
</tbody>
</table>
Summary & Conclusions

• In the new and current era of melanoma therapy, intralesional approaches may have value
 – Local direct effect
 – Systemic immune effect
• Several agents in development appear promising
 – Recent ODAC vote on TVEC
• Combination therapies are likely to be the future and may be the best way to integrate them into clinical practice