Innovative Combination Strategies: Oncolytic and Systemic Therapy

Sanjiv S. Agarwala, MD

Professor of Medicine, Temple University Chief, Oncology & Hematology St. Luke's Cancer Center Bethlehem, PA, USA

Overview

- What is oncolytic therapy?
- What is the data with single agent oncolytic agents?
- What is the data with combinations?
- Future directions and prospects

What is Oncolytic Therapy?

- Direct injection of tumors with agents that produce regression
- Produce a local and systemic effect that is immunologically mediated
- Viral based
 - TVEC, HF-10, CAVATAK
- Non-viral based
 PV-10, IL-12

Oncolytic Immunotherapy: Mechanisms of Action

• Direct

Cell lysis (viral replication, chemical and mechanical ablation)

Indirect "bystander response"

 Induction of innate immune response
 Induction of adaptive immune response

Mullen JT et al. The Oncologist. 2002;7:106-119.

Oncolytic Immunotherapy Designed to Produce Local and Systemic Effects

STEP 2 STEP 1 Uptake, process, and presentation of Tumor cell lysis and release tumor antigens by APCs of tumor-derived antigens • T-cell priming and activation Generation of memory The T cells **Cancer–Immunity STEP 7** • Killing of tumor cells Cycle Travel of activated T Memory-mediated cells to tumors control of tumor cell recurrence **STEP 6 STEP 5 T-cell recognition T-cell infiltration** of tumor cells into tumors

APC, antigen-presenting cell Chen DS et al. Immunity. 2013;39:1-10. **STEP 3**

STEP 4

Soft Tissue/Skin Metastases Role for Intralesional Oncolytic Therapy

- Soft Tissue and Skin metastases occur frequently in melanoma
- Local-regional control is clinically important
- Systemic Therapy may not always be possible or appropriate
 - Newer IL agents produce systemic responses
 - Backbone for future combinations

Melanoma intralymphatic metastasis Spectrum of disease (AJCC IIIB/IIIC)

- 3 10% of primary melanoma develop local / in-transit recurrences
 - High risk groups: thick, ulcerated, positive SLN, lower extremity
- Source of significant morbidity
- Greater than 50% risk of distant disease and death

Courtesy of Robert Andtbacka, MD

Current Clinical Trials

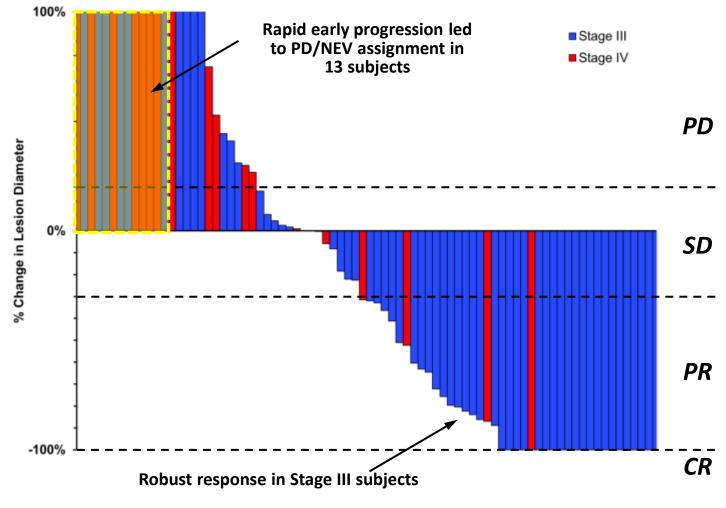
- Single Agent (Monotherapy) Trials

 PV-10 (phase III ongoing)
 IL-12 electroporation
 CAVATAK
- Combination Trials

 TVEC
 PV-10
 HF-10

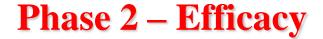
Rose Bengal Disodium 10% (PV-10)

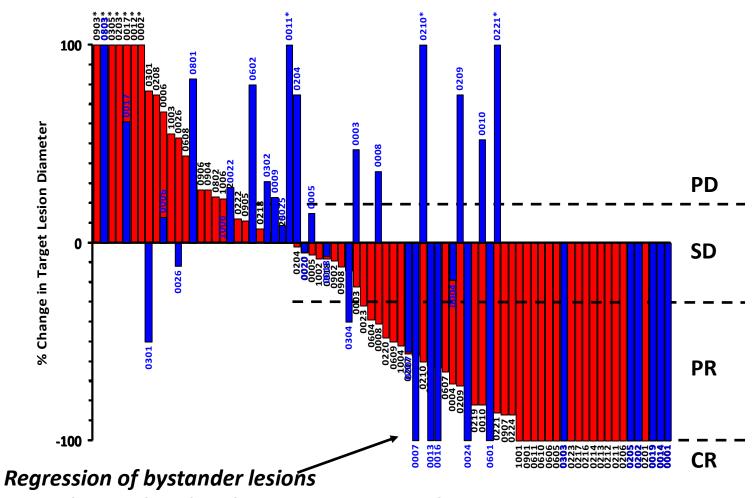
- Small molecule fluorescein derivative
- Primary tumor lysis by entering lysososmes
- Tumor-infiltrating lymphocytes at local site and regression of distant tumors
- Necrotic tumor cells facilitate antigen presentation
- Secondary tumors are rejected in immuno-competent animals
- No immune response in immuno-compromised animals
- Response is tumor specific
- Adoptive transfer of spleen cells can convey immunity
 - T cell subsets have increased expression of Gamma IFN


PV-10 Phase 2: Efficacy

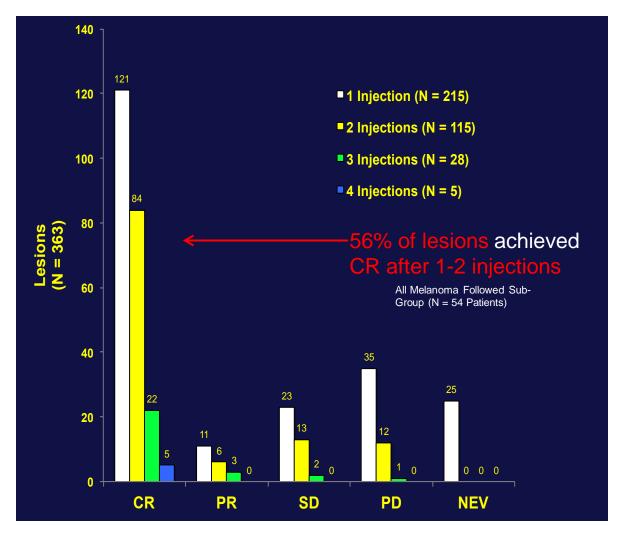
Objective Response of Study Lesions (n = 80)

Best Response (RECIST, n = 80 through Wk 52)	Target Lesions (n = 80)	Bystander Lesions (n = 38)
CR	19 (24%)	9(24%)
PR	20 (25%)	5 (13%)
SD	18 (22%)	7 (18%)
PD	23 (29%)	17 (45%)
ND		42
CR + PR	39 (49%)	14 (37%)
CR + PR + SD (locoregional disease control)	57(71%)	2((55%))

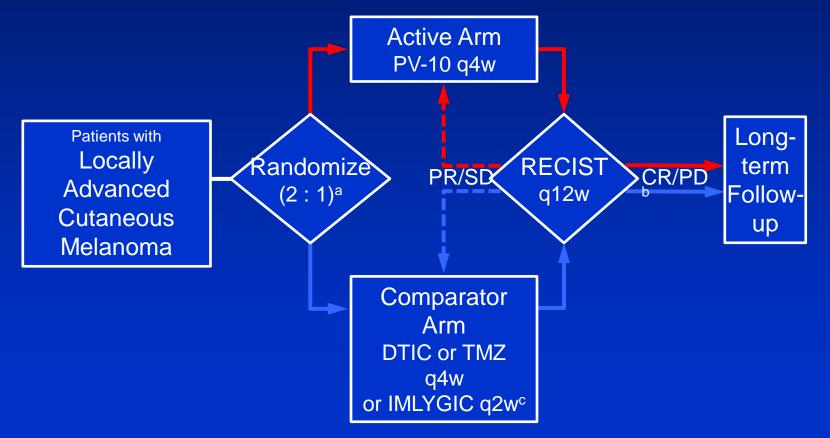

Thompson JF, Agarwala, SS et al. Ann Surg Oncol. 2015;22(7):2135-2142.


PV-10 Response in Target Lesions

AR


S

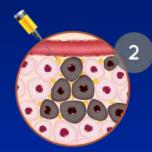
strongly correlated with response in target lesions


Responses with PV-10 Occur Early

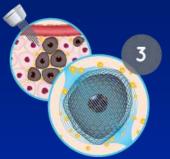
Agarwala et al., ASCO 2014

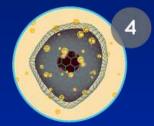
Phase III Design

Protocol PV-10-MM-31



- a. 225 patients randomized 2:1 (stratified for prior immune checkpoint inhibition)
- b. Cross-over allowed upon documented PD in comparator arm
- c. IMLYGIC repeated after 3 weeks then q2w


Intratumoral DNA-encoded IL-12 Electroporation (IT-pIL12-EP)


Cancer Cells

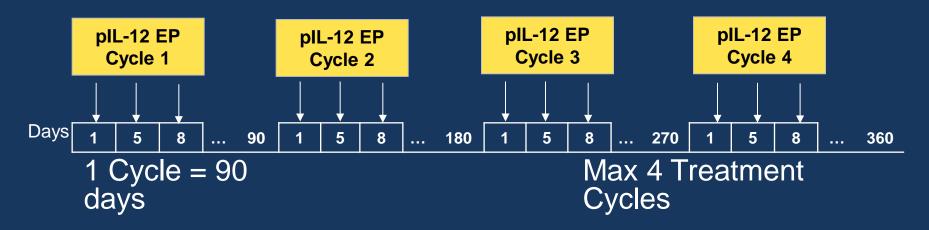
DNA IL-12 Injected

Electroporation

DNA IL-12 Enters

IL-12 Protein Expression

Initiation of Local Pro-Inflammatory Process



Targeted Anti-Tumor Immune Response & Lymphocyte Education

Systemic Anti-Tumor Immune Response

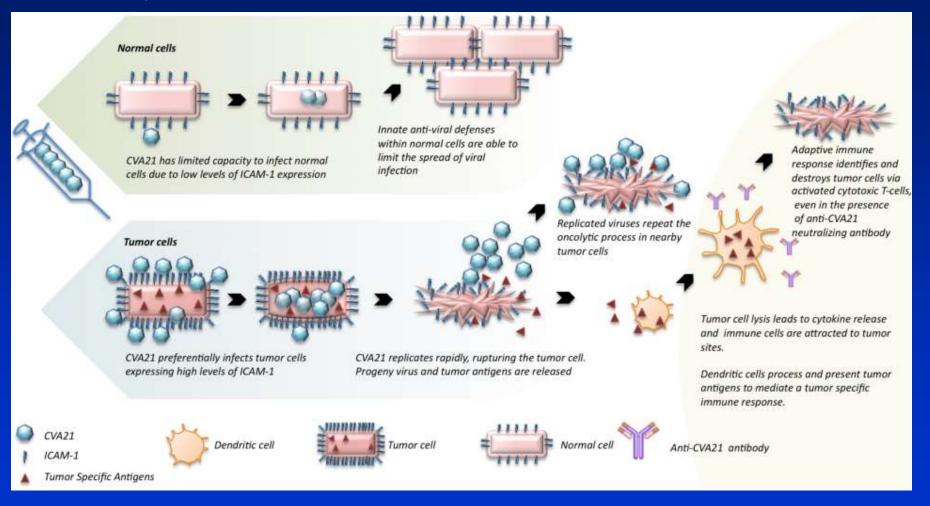
Phase 2 Study Design and Treatment Schedule

Primary Objective:

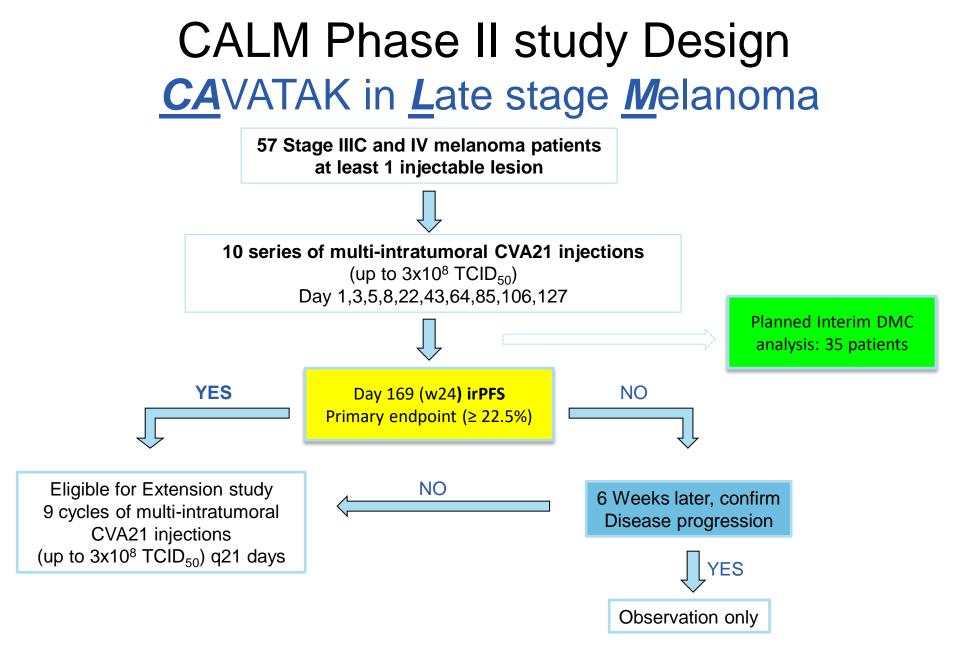
 Overall Response Rate by modified "skin" RECIST within 180 days (ORR = CR + PR) Secondary Objectives

- Disease Control Rate (DCR = CR
- Distant Lesion Regression
- Duration of Response (DOR)
- Progression-Free Survival (PFS)
- Overall Survival (OS)
- Safety

Plasmid Encoded DNA IL-12 Electroporation

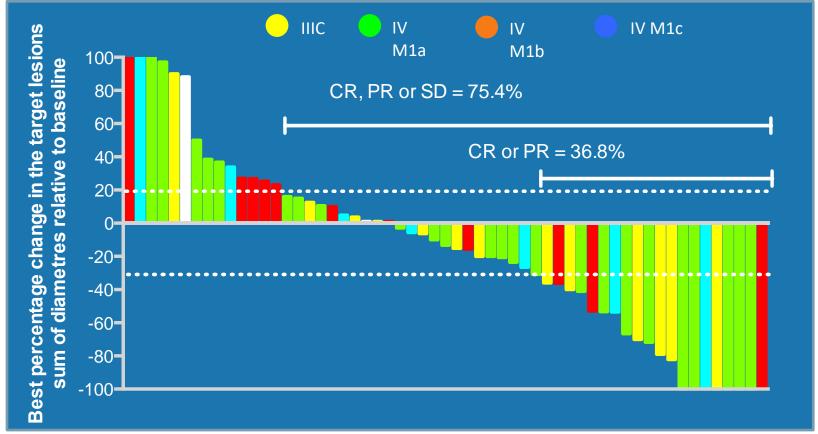


Responses in electroporated and non-electroporated lesions


Phase II study (interim analysis; n=28)

- Primary endpoint ORR 24 wks
 - OR 32% (9/28)
 - CR 11% (3/28)
- Lesion responses (n=85)
 - SD 31% (26/85)
 - PR 8% (7/85)
 - CR 45% (38/85)
- Response untreated lesions
 - 59 % (13/22 patients)

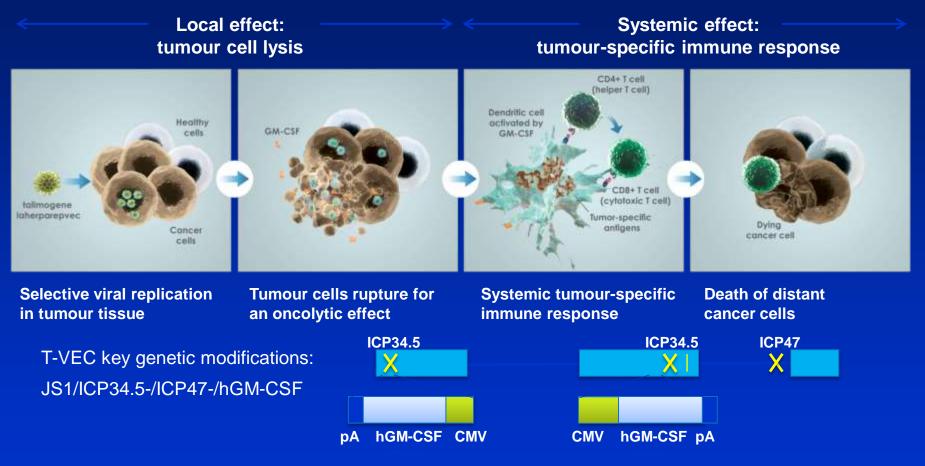
Coxsackievirus A21(CVA21) Oncolytic immunotherapeutic modes of action



Andtbacka RHI, et al. World Melanoma Congress, 2013

CALM Phase II

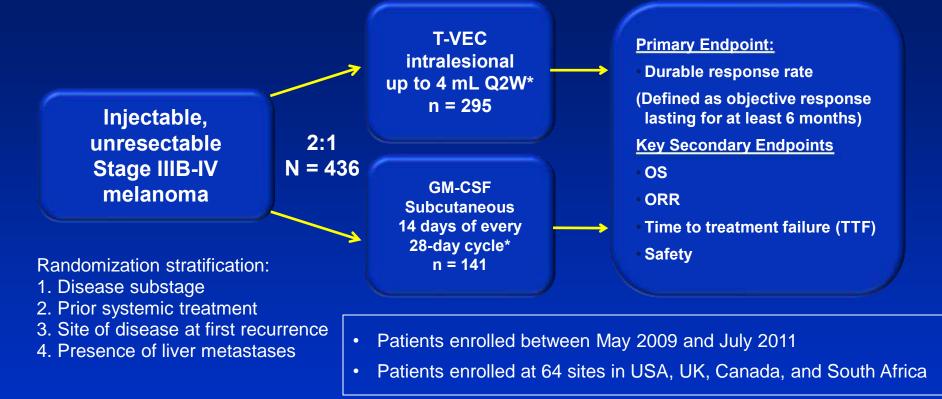
Best Percentage Change in Target Lesions*


Analysis excludes patients satisfying protocol criteria but not on study long enough for 6 week tumor response assessment.

CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease Andtbacka RHI et al. SSO Annual Cancer Symposium 2015.

Current Clinical Trials

- Single Agent (Monotherapy) Trials
 - PV-10 (phase III ongoing)
 - IL-12 electroporation
 - CAVATAK
 - HF10
- Combination Trials
 TVEC
 PV-10
 HF-10


T-VEC: an HSV-1-derived oncolytic immunotherapy designed to produce both local and systemic effects

CMV, cytomegalovirus; hGM-CSF, human granulocyte-macrophage colony-stimulating factor; HSV-1, herpes simplex virus type 1; ICP, infected cell protein; pA, polyadenylation (from bovine growth hormone).

Varghese S and Rabkin SD. Cancer Gene Ther. 2002;9:967–978. Hawkins LK, et al. Lancet Oncol. 2002;3:17–26. Fukuhara H and Toda T. Curr Cancer Drug Targets. 2007;7:149–155. Sobol PT, et al. Mol Ther. 2011;19:335–344. Liu BL, et al. Gene Ther. 2003;10:292–303. Melcher A, et al. Mol Ther. 2011;19:1008– 1016. Fagoaga OR. In: McPherson RA, Pincus MR, eds. Henry's Clinical Diagnosis and Management by Laboratory Methods. 2011:933–953. Dranoff G. Oncogene. 2003;22:3188–3192.

OPTIM phase III study design

*Dosing of intralesional T-VEC was $\leq 4 \text{ mL x}10^6 \text{ pfu/mL}$ once, then after 3 weeks, $\leq 4 \text{ mL x}10^8 \text{ pfu/mL}$ every two weeks (Q2W). Dosing of GM-CSF was 125 µg/m² subcutaneous daily x 14 days of every 28 day cycle.

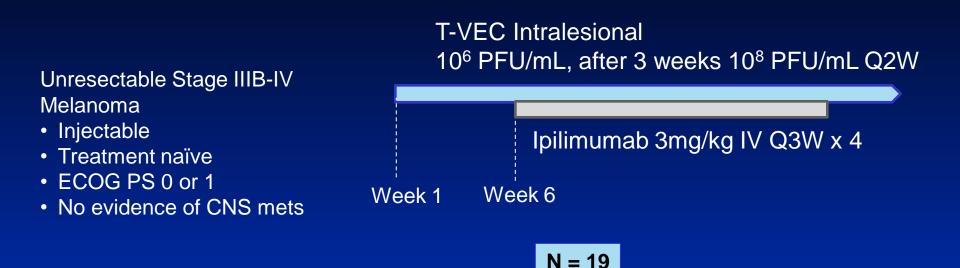
Andtbacka RHI, et al. ASCO 2013 abstract LBA9008. Kaufman H, et al. ASCO 2014 abstract 9008a.

OPTiM phase III study results

Primary endpoint: durable response rate per EAC*

Secondary endpoint: objective response per EAC

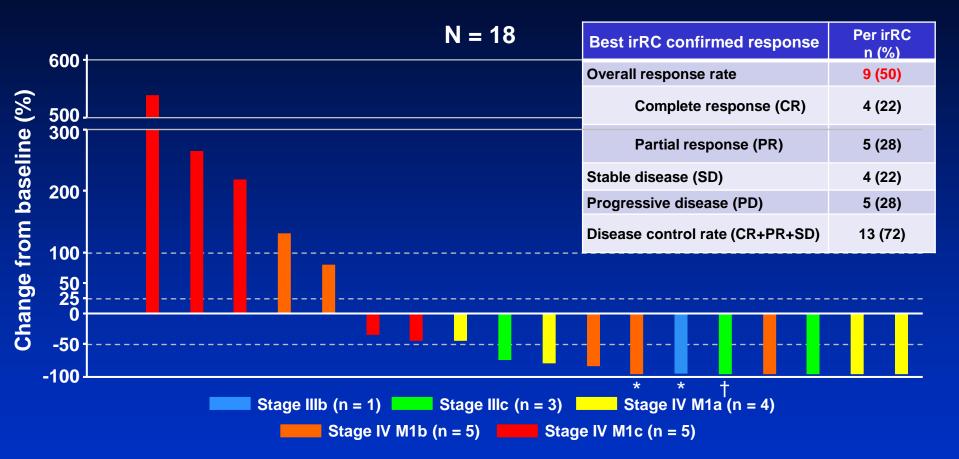
ITT set	GM-CSF (n = 141)	T-VEC (n = 295)	Treatment difference (T-VEC – GM-CSF)
Durable response rate	2.1%	16.3%	14.1% 95% CI (8.2, 19.2) P < 0.0001 (unadjusted odds ratio 8.9)
ITT Set	GM-CSF (n = 141)	T-VEC (n = 295)	Treatment difference (T-VEC – GM-CSF)
Objective overall response (95% CI)	5.7% (1.9, 9.5)	26.4% (21.4, 31.5)	20.8% (14.4, 27.1) P < 0.0001 descriptive
CR	0.7%	10.8%	


*Rate of CR or PR that began at any point within 12 months of initiation of therapy and lasted continuously for 6 months or longer.

Determined using modified WHO criteria by an independent, blinded endpoint assessment committee (EAC).

ITT, intention to treat; CI, confidence interval.

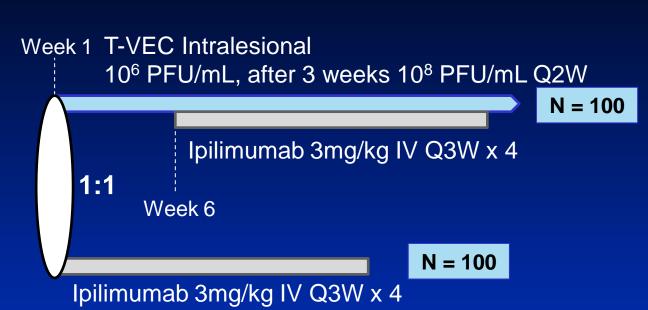
Andtbacka RHI, et al. ASCO 2013 abstract LBA9008. Kaufman H, et al. ASCO 2014 abstract 9008a.


T-VEC + ipilimumab Phase Ib trial

- T-VEC dosing until CR, all injectable tumors disappear, PD per irRC, or intolerance, whichever is first
- Safety follow-up occurs 30 (+7) days after last dose of T-VEC or 60 (+7) days after last dose of ipilimumab, whichever is later

Primary Endpoint:Incidence of dose-limiting toxicities (DLTs)Key Secondary Endpoints:ORR^{irRC}, Safety

Best overall response


The waterfall plot shows best reductions in tumor burden at a single time point.

For the irRC response table, CR, PR, and PD needed to be confirmed by consecutive assessments no less than 4 weeks apart to be considered confirmed with the following exception: if PD was the last tumor assessment, it was considered as confirmed. * \leq -98%, but > -100%, [†]Unconfirmed CR

T-VEC + ipilimumab Phase II trial (20110264)

Unresectable Stage IIIB-IV Melanoma

- Injectable
- ≤ 1 line of systemic therapy for BRAF wt, or ≤ 2 lines of systemic therapy including BRAFi regimen for BRAF mutated
- ECOG PS 0 or 1
- No evidence of active CNS mets

- T-VEC dosing until CR, all injectable tumors disappear, PD per irRC, or intolerance, whichever is first
- Safety follow-up occurs 30 (+7) days after last dose of T-VEC or 60 (+7) days after last dose of ipilimumab, whichever is later

Primary EndpointORR^{irRC}Secondary EndpointsPFS, OS, DRR, BOR, DCR, DoR, TTR, resection rate

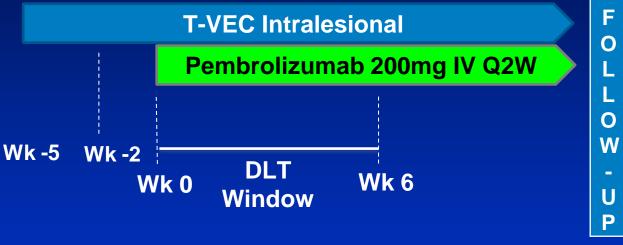
T-VEC + ipilimumab Phase II trial (20110264) Initial results

	Confirmed	a n (%)	Unconfirmed ^b n (%)		
	T-VEC+ IPI (N=42)	IPI (N=40)	TVEC+IPI (N=42)	IPI (N=40)	
ORR – n (%)	15 (35.7)	7 (17.5)	21 (50.0)	11 <mark>(27.5)</mark>	
(95% CI)	(21.6, 52.0)	(7.3, 32.8)	(34.2, 65.8)	(14.6, 43.9)	
CR	4 (9.5)	4 (10.0)	6 (14.3)	7 (17.5)	
PR	11 (26.2)	3 (7.5)	15 (35.7)	4 (10.0)	
SD	13 (31.0)	11 (27.5)	7 (16.7)	7 (17.5)	
PD	6 (14.3)	5 (12.5)	11 (26.2)	17 (42.5)	
UE*	5 (11.9)	13 (32.5)	0 (0.0)	1 (2.5)	
Odds ratio (95% CI) for ORR	2.6 (0.9, 7.3)		2.6 (1.0, 6.6)		
DCR (%) – n (%)	28 (66.7)	18 (45.0)	28 (66.7)	18 (45.0)	
(95% CI)	(50.5, 80.4)	(29.3, 61.5)	(50.5, 80.4)	(29.3, 61.5)	
Odds ratio (95% CI) for DCR	2.4 (1.0, 6.0)		2.4 (1.0, 6.0)		

^aConfirmation of initial CR/PR/PD by subsequent assessment by ≥ 4 w apart. A CR/PR without confirmation is classified

as SD and *an unconfirmed PD is classified as UE. Further follow up is ongoing.

^bUnconfirmed is response or PD without confirmation requirement. CR = complete response; PR = partial response; SD = stable disease; PD = progressive disease; UE = unable to evaluate; DCR = disease control rate (SD or better).


T-VEC + Pembrolizumab Phase 1b Trial (Masterkey – 265)

- Unresectable stage III or IV melanoma
- Treatment naive
- Injectable lesions
- No clinically active brain mets
- No active herpetic skin lesions or prior complications from herpetic infection

T-VEC intralesional •Up to 4 mL per treatment

- •1st dose 10⁶ PFU/mL
- •Then 10⁸ PFU/mL Q2W

- Treatment until whichever occurs first:
- Progressive disease (PD) per irRC
- Intolerance
- All injectable tumors disappeared (T-VEC only)
- 2 Years

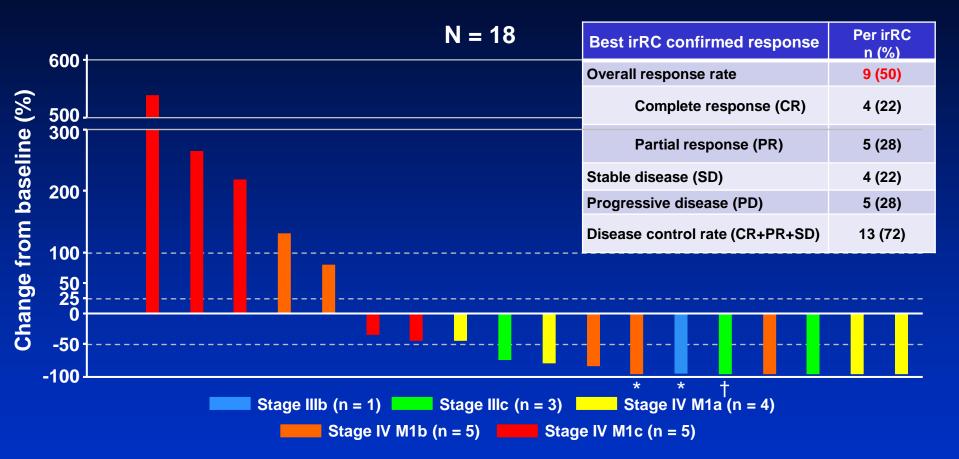
T-VEC: talimogene laherparepvec

Long, et al. ECC 2015 Long, et al. SMR 2015

Amgen study 20110265.

Available at: https://clinicaltrials.gov/ct2/show/NCT02263508. Accessed January 2016

30 (+7) days after end of treatment

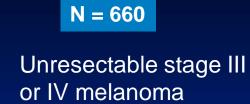

S

A F

Ε

V

Best overall response



The waterfall plot shows best reductions in tumor burden at a single time point.

For the irRC response table, CR, PR, and PD needed to be confirmed by consecutive assessments no less than 4 weeks apart to be considered confirmed with the following exception: if PD was the last tumor assessment, it was considered as confirmed. * \leq -98%, but > -100%, [†]Unconfirmed CR

Puzanov I,....Andtbacka, RHA J Clin Oncol 2016; JCO671529. [Epub ahead of print]

MASTERKEY-265 Phase 3 Study Design

- Treatment naive •
- Injectable lesions •
- No clinically active • brain mets
- No active herpetic • skin lesions or prior complications from herpetic infection

T-VEC intralesional S • Up to 4 mL per treatment N = 330 Α • 1st dose 10⁶ PFU/mL F • Then 10⁸ PFU/mL Q2W x 4, Е then Q3W Т **T-VEC Intralesional** Y Pembrolizumab 200mg IV Q3W F 0 R 1:1 **T-VEC placebo Intralesional** 0 W Pembrolizumab 200mg IV Q3W U Treatment until whichever occurs first: N = 330

- Complete Response (CR)
- Progressive disease (PD) per irRC-RECIST
- Intolerance

2 Years

All injectable tumors disappeared (T-VEC/placebo only)

30 (+7) days after end of treatment

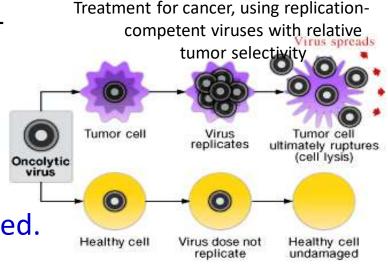
Ρ

T-VEC: talimogene laherparepvec

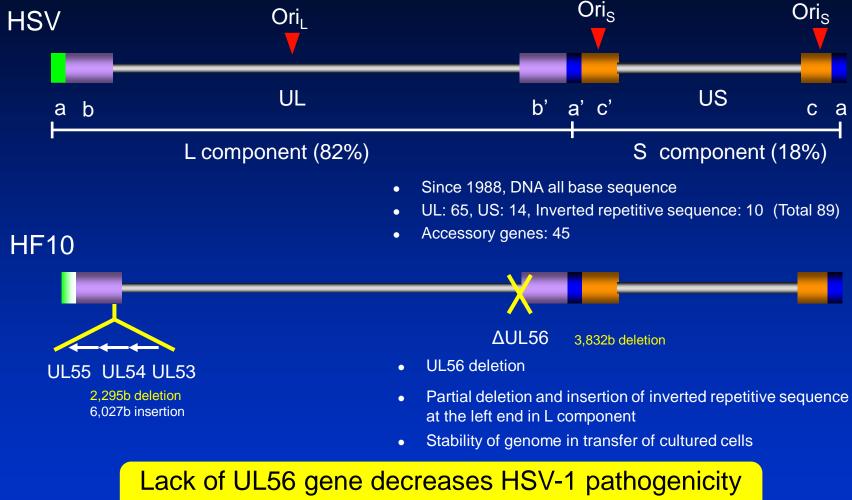
Amgen study 20110265. Available at: https://clinicaltrials.gov/ct2/show/NCT02263508. Accessed January 2016

PV-10 + Pembrolizumab

• Phase 1b

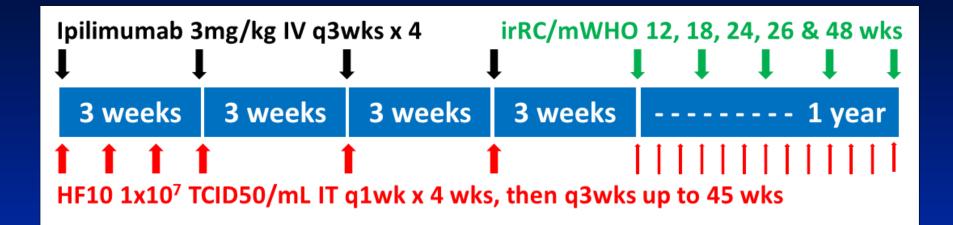

	Treatment Phase (PV-10 and Pembro q3w)			-	o nse Foll Pembro q3v				
Screening	Cycle 1	Cycle 2	Cycle 3	Cycle 4	Cycle 5	Cycle 6	Cycle 7	Cycle	Survival
						RECIST Assessment (q12w)			

- Patients receive up to 5 cycles of PV-10 and Pembro (q3w)
- Patients continue to receive treatment until PD (q3w)
- Patients remain on active portion of study for up to 24 months


HF10 – Oncolytic HSV-1

- Spontaneous mutant strain of HSV-1 with no external gene.
- → Greater replication ability= effective dose is lower
- → No toxicity to be caused by exogenous gene (ex. GM-CSF) inserted.
- Attenuation of neurovirulence to be attributable to the lack of the UL56 gene.
- In addition to local oncolytic tumor destruction, systemic anti-tumor immune response observed.

Oncolytic Cancer Therapy



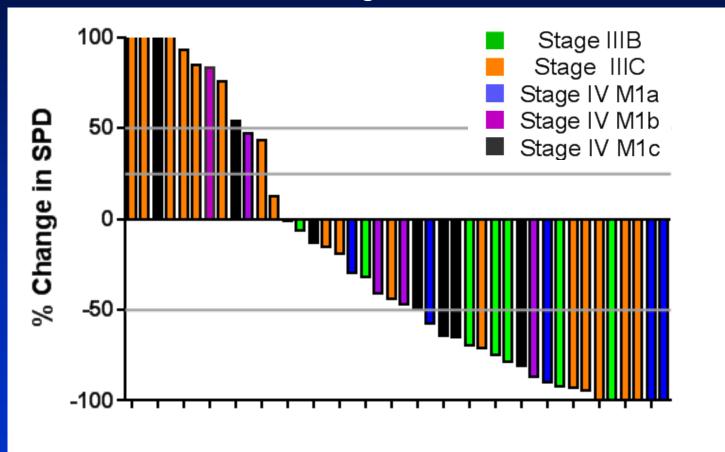
HSV Genome Structure & HF10

without affecting viral replication ability

HF10 + Ipilimumab Phase II trial in unresectable stage IIIB – IV melanoma

- Multicenter trial
- **Primary objective:** Best Overall Response Rate (BORR) at week 24
- Secondary objective: safety, tolerability, ORR, PFS, DRR, 1-year OS, correlative studies

HF10 + Ipilimumab Phase II trial in unresectable stage IIIB – IV melanoma


Patient demographics N=46

Characteristics	N (%)	Characteristics	N (%)
Age (Years)		Sex	
Median	67	Male	27 (59%)
Range	29-92	Female	19 (41%)
ECOG Status		Disease Stage	
0	34 (74%)	IIIB	9 (20%)
1	12 (26%)	IIIC	20 (43%)
2	0 (0%)	IV	17 (37%)
HSV-1 antibody		≥ 1 Prior Cancer Therapy	
(+)	30 (65%)	Yes	20 (43%)
(-)	16 (35%)	No	26 (57%)

Andtbacka, RHA et al. ASCO 2016 Abstract 9543 (and poster presentation)

HF10 + Ipilimumab Phase II trial in unresectable stage IIIB – IV melanoma

Maximum change in index lesions

Current Melanoma Landscape: Is there a role for IL monotherapy?

Yes	No
Not all patients candidates for systemic therapy (co- morbidities, toxicity)	Systemic therapies in 2015 are safe and effective
After progression on other therapies	Melanoma is a systemic disease
Alternative to surgery?	Surgery is an instant CR
Neoadjuvant potential	Not yet proven

Summary & Conclusions

- Soft tissue and cutaneous metastases are a major clinical problem in melanoma
- Oncolytic intralesional approaches may have value
 - Local direct effect
 - Systemic immune effect
 - Low toxicity
- Several agents in development appear promising
 TVEC approved by US and EU regulators
- Combination therapies are likely to be the future and may be the best way to integrate them into clinical practice